Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Behavior and Social Issues ; 31(1):297-326, 2022.
Article in English | APA PsycInfo | ID: covidwho-2286397

ABSTRACT

Recent police brutality and related violence against Black people, coupled with the COVID-19 pandemic, has further evidenced the disproportionate impact of systemic racism in our institutions and across society. In the United States, the alarming mortality rates for Black people due to police violence and COVID-19 related deaths are clear demonstrations of inequities within a long history of disparate outcomes. In understanding systemic racism, it is essential to consider how it is embedded within society and across socio-ecological levels. The Social-Ecological Model (SEM) is used to examine conditions within the environment that maintain systemic racism, including within our field and discipline. A behavioral-community approach for examining racism aids in determining points of intervention across multiple ecological levels that may contribute to behavior change, including with behaviorists. The science of behavior is well-suited to help examine the contingencies governing behaviors within and across systems, which is pivotal for addressing operant behaviors to influence long-term behavior change. This paper calls on the behavioral community to address systemic racism within our environments and systems of influence to contribute to a more equitable community. Systemic racism, including within the context of anti-Blackness, is examined by considering behavior change strategies that can be supported by behaviorists across socio-ecological levels. Tools for collaborative action are provided to support behaviorists in demonstrating the skills needed across a continuum of behaviors from allyship to anti-racism to actively address systemic racism. (PsycInfo Database Record (c) 2023 APA, all rights reserved)

2.
BMJ Open ; 13(3): e066700, 2023 03 22.
Article in English | MEDLINE | ID: covidwho-2280256

ABSTRACT

INTRODUCTION: People with disabilities have a higher prevalence of cigarette smoking than people without disabilities. However, little information exists on smoking cessation interventions tailored to address the unique needs of people with disabilities. This paper describes a systematic review protocol to identify and evaluate tobacco smoking cessation interventions designed to improve outcomes for people with disabilities. METHODS AND ANALYSIS: We will conduct a systematic review of the literature using the procedures outlined by Cochrane. We will search four electronic databases (CINAHL Plus (EBSCO), Embase (Ovid), Medline (Ovid) and PsycINFO (Ovid)) with no date restriction to identify tobacco cessation interventions tailored to meet the needs of people with disabilities. We will extract data and assess risk of bias using the RoB2 and ROBINS-I for included studies using Covidence systematic review software. Quantitative and qualitative syntheses will summarise key study characteristics and outcomes with text, tables and forest plots; a meta-analysis will be conducted, if appropriate. ETHICS AND DISSEMINATION: Ethical approval is not required as there are no primary data associated with the study. Data will be disseminated through a peer-reviewed articles and conference presentations. PROSPERO REGISTRATION NUMBER: CRD42022337434.


Subject(s)
Cigarette Smoking , Smoking Cessation , Text Messaging , Humans , Adult , Smoking Cessation/methods , Behavior Therapy , Software , Review Literature as Topic , Meta-Analysis as Topic
3.
Prev Med ; 165(Pt B): 107209, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2221494

ABSTRACT

The prevalence of cigarette smoking in young adults is higher among those with socioeconomic disadvantage than those without. Low treatment-seeking among young adult smokers is compounded by few efficacious smoking cessation interventions for this group, particularly socioeconomically-disadvantaged young adults (SDYA) who smoke cigarettes. The goal of this study was to test a tailored smoking-cessation intervention for SDYA. 343 SDYA aged 18-30 living in the U.S. (85% female) who smoke cigarettes with access to a smartphone and interest in quitting smoking in the next six months were recruited online in Spring 2020 and randomized to referral to online quit resources (usual care control; n = 171) or a 12-week tailored text message smoking-cessation program with a companion web-based intervention (n = 172). Intent to treat analyses examined associations between study condition, self-reported 30-day point prevalence abstinence (PPA), and confidence to quit smoking at 12 weeks, controlling for potential confounders. Intervention group participants had greater self-reported 30-day PPA at 12-weeks than controls (adjusted relative risk 3.93, 95% CI 2.14-7.24). Among those who continued smoking, the intervention increased confidence to quit (0.81 points, 95% confidence interval 0.08-1.53). Weekly engagement in the intervention predicted greater cessation. A tailored text message intervention for SDYA increased smoking abstinence and confidence to quit at the end-of-treatment. Findings may have been influenced by recruitment at the start of the COVID pandemic but suggest that text messaging is an acceptable and efficacious cessation strategy for SDYA smokers. Future studies should examine the impact on longer-term smoking-cessation and importance of intervention tailoring for SDYA.


Subject(s)
COVID-19 , Smoking Cessation , Text Messaging , Young Adult , Female , Humans , Male , Smokers , Health Behavior
4.
Sci Adv ; 8(46): eade1860, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2137356

ABSTRACT

Since the emergence of SARS-CoV-2, five different variants of concern (VOCs) have been identified: Alpha, Beta, Gamma, Delta, and Omicron. Because of confounding factors in the human population, such as preexisting immunity, comparing severity of disease caused by different VOCs is challenging. Here, we investigate disease progression in the rhesus macaque model upon inoculation with the Delta, Omicron BA.1, and Omicron BA.2 VOCs. Disease severity in rhesus macaques inoculated with Omicron BA.1 or BA.2 was lower than those inoculated with Delta and resulted in significantly lower viral loads in nasal swabs, bronchial cytology brush samples, and lung tissue in rhesus macaques. Cytokines and chemokines were up-regulated in nasosorption samples of Delta animals compared to Omicron BA.1 and BA.2 animals. Overall, these data suggest that, in rhesus macaques, Omicron replicates to lower levels than the Delta VOC, resulting in reduced clinical disease.

5.
JCI Insight ; 7(22)2022 11 22.
Article in English | MEDLINE | ID: covidwho-2138383

ABSTRACT

An animal model that fully recapitulates severe COVID-19 presentation in humans has been a top priority since the discovery of SARS-CoV-2 in 2019. Although multiple animal models are available for mild to moderate clinical disease, models that develop severe disease are still needed. Mink experimentally infected with SARS-CoV-2 developed severe acute respiratory disease, as evident by clinical respiratory disease, radiological, and histological changes. Virus was detected in nasal, oral, rectal, and fur swabs. Deep sequencing of SARS-CoV-2 from oral swabs and lung tissue samples showed repeated enrichment for a mutation in the gene encoding nonstructural protein 6 in open reading frame 1ab. Together, these data indicate that American mink develop clinical features characteristic of severe COVID-19 and, as such, are uniquely suited to test viral countermeasures.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mink , Lung/diagnostic imaging
6.
Behavior and Social Issues ; : 1-30, 2022.
Article in English | EuropePMC | ID: covidwho-2073962

ABSTRACT

Recent police brutality and related violence against Black people, coupled with the COVID-19 pandemic, has further evidenced the disproportionate impact of systemic racism in our institutions and across society. In the United States, the alarming mortality rates for Black people due to police violence and COVID-19 related deaths are clear demonstrations of inequities within a long history of disparate outcomes. In understanding systemic racism, it is essential to consider how it is embedded within society and across socio-ecological levels. The Social-Ecological Model (SEM) is used to examine conditions within the environment that maintain systemic racism, including within our field and discipline. A behavioral-community approach for examining racism aids in determining points of intervention across multiple ecological levels that may contribute to behavior change, including with behaviorists. The science of behavior is well-suited to help examine the contingencies governing behaviors within and across systems, which is pivotal for addressing operant behaviors to influence long-term behavior change. This paper calls on the behavioral community to address systemic racism within our environments and systems of influence to contribute to a more equitable community. Systemic racism, including within the context of anti-Blackness, is examined by considering behavior change strategies that can be supported by behaviorists across socio-ecological levels. Tools for collaborative action are provided to support behaviorists in demonstrating the skills needed across a continuum of behaviors from allyship to anti-racism to actively address systemic racism.

7.
Front Public Health ; 10: 875880, 2022.
Article in English | MEDLINE | ID: covidwho-1987574

ABSTRACT

Objective: To understand the effects of the coronavirus pandemic on the health and participation of people with mobility disabilities living in the community. Methods: Participants responded to a survey designed to assess the effects of the coronavirus pandemic on their health and access to health care. Participants identified if various life situations were worsened, unchanged, or improved during the pandemic. Participants could provide further information on their improved or worsened lived experience in open-ended questions. Results: A total of 39 people with mobility disabilities responded to the survey. Results indicate that many experienced a worsening of life situations related to health, including access to medications, health care services, and transportation. Conclusions: Results show that many experiences were caused by the lack of appropriate policies, rather than the pandemic itself. Therefore, there is a need to modify pandemic preparedness plans and other policies to meet the needs of people with disabilities.


Subject(s)
COVID-19 , Disabled Persons , COVID-19/epidemiology , Humans , Pandemics , Physical Distancing , SARS-CoV-2
8.
Nat Commun ; 13(1): 4610, 2022 08 08.
Article in English | MEDLINE | ID: covidwho-1977995

ABSTRACT

ChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirus-vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 has been shown to have 74% vaccine efficacy against symptomatic disease in clinical trials. However, variants of concern (VoCs) have been detected, with substitutions that are associated with a reduction in virus neutralizing antibody titer. Updating vaccines to include S proteins of VoCs may be beneficial, even though current real-world data is suggesting good efficacy following boosting with vaccines encoding the ancestral S protein. Using the Syrian hamster model, we evaluate the effect of a single dose of AZD2816, encoding the S protein of the Beta VoC, and efficacy of AZD1222/AZD2816 as a heterologous primary series against challenge with the Beta or Delta variant. Minimal to no viral sgRNA could be detected in lungs of vaccinated animals obtained at 3- or 5- days post inoculation, in contrast to lungs of control animals. In Omicron-challenged hamsters, a single dose of AZD2816 or AZD1222 reduced virus shedding. Thus, these vaccination regimens are protective against the Beta, Delta, and Omicron VoCs in the hamster model.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Viral , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Cricetinae , Humans , Mesocricetus , SARS-CoV-2
9.
Science (New York, N.Y.) ; 2022.
Article in English | EuropePMC | ID: covidwho-1939926

ABSTRACT

To combat future SARS-CoV-2 variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles presenting randomly-arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded, rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD-nanoparticles in mice and macaques, observing stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants including Omicrons and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest mosaic-8 RBD-nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers. Description

10.
Viruses ; 14(3)2022 03 06.
Article in English | MEDLINE | ID: covidwho-1786061

ABSTRACT

The emergence of SARS-CoV-2 in the human population and the resulting COVID-19 pandemic have led to the development of various diagnostic tests. The OraSure InteliSwab™ COVID-19 Rapid Test is a recently developed and FDA emergency use-authorized rapid antigen-detecting test that functions as a lateral flow device targeting the nucleocapsid protein. Due to SARS-CoV-2 evolution, there is a need to evaluate the sensitivity of rapid antigen-detecting tests for new variants, especially variants of concern such as Omicron. In this study, the sensitivity of the OraSure InteliSwab™ Test was investigated using cultured strains of the known variants of concern (VOCs, Alpha, Beta, Gamma, Delta, and Omicron) and the ancestral lineage (lineage A). Based on dilution series in cell culture medium, an approximate limit of detection for each variant was determined. The OraSure InteliSwab™ Test showed an overall comparable performance using recombinant nucleocapsid protein and different cultured variants, with recorded limits of detection ranging between 3.77 × 105 and 9.13 × 105 RNA copies/mL. Finally, the sensitivity was evaluated using oropharyngeal swabs from Syrian golden hamsters inoculated with the six VOCs. Ultimately, the OraSure InteliSwab™ COVID-19 Rapid Test showed no decrease in sensitivity between the ancestral SARS-CoV-2 strain and any VOCs including Omicron.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Nucleocapsid Proteins/genetics , Pandemics , SARS-CoV-2/genetics
11.
PLoS Pathog ; 18(2): e1009914, 2022 02.
Article in English | MEDLINE | ID: covidwho-1686113

ABSTRACT

As novel SARS-CoV-2 variants continue to emerge, it is critical that their potential to cause severe disease and evade vaccine-induced immunity is rapidly assessed in humans and studied in animal models. In early January 2021, a novel SARS-CoV-2 variant designated B.1.429 comprising 2 lineages, B.1.427 and B.1.429, was originally detected in California (CA) and it was shown to have enhanced infectivity in vitro and decreased antibody neutralization by plasma from convalescent patients and vaccine recipients. Here we examine the virulence, transmissibility, and susceptibility to pre-existing immunity for B 1.427 and B 1.429 in the Syrian hamster model. We find that both variants exhibit enhanced virulence as measured by increased body weight loss compared to hamsters infected with ancestral B.1 (614G), with B.1.429 causing the most marked body weight loss among the 3 variants. Faster dissemination from airways to parenchyma and more severe lung pathology at both early and late stages were also observed with B.1.429 infections relative to B.1. (614G) and B.1.427 infections. In addition, subgenomic viral RNA (sgRNA) levels were highest in oral swabs of hamsters infected with B.1.429, however sgRNA levels in lungs were similar in all three variants. This demonstrates that B.1.429 replicates to higher levels than ancestral B.1 (614G) or B.1.427 in the oropharynx but not in the lungs. In multi-virus in-vivo competition experiments, we found that B.1. (614G), epsilon (B.1.427/B.1.429) and gamma (P.1) dramatically outcompete alpha (B.1.1.7), beta (B.1.351) and zeta (P.2) in the lungs. In the nasal cavity, B.1. (614G), gamma, and epsilon dominate, but the highly infectious alpha variant also maintains a moderate size niche. We did not observe significant differences in airborne transmission efficiency among the B.1.427, B.1.429 and ancestral B.1 (614G) and WA-1 variants in hamsters. These results demonstrate enhanced virulence and high relative oropharyngeal replication of the epsilon (B.1.427/B.1.429) variant in Syrian hamsters compared to an ancestral B.1 (614G) variant.


Subject(s)
COVID-19/virology , SARS-CoV-2/pathogenicity , Animals , COVID-19/pathology , Disease Models, Animal , Female , Humans , Lung/pathology , Lung/virology , Male , Mesocricetus , Mutation , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virulence
12.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: covidwho-1637974

ABSTRACT

Advanced age is a key predictor of severe COVID-19. To gain insight into this relationship, we used the rhesus macaque model of SARS-CoV-2 infection. Eight older and eight younger macaques were inoculated with SARS-CoV-2. Animals were evaluated using viral RNA quantification, clinical observations, thoracic radiographs, single-cell transcriptomics, multiparameter flow cytometry, multiplex immunohistochemistry, cytokine detection, and lipidomics analysis at predefined time points in various tissues. Differences in clinical signs, pulmonary infiltrates, and virus replication were limited. Transcriptional signatures of inflammation-associated genes in bronchoalveolar lavage fluid at 3 dpi revealed efficient mounting of innate immune defenses in both cohorts. However, age-specific divergence of immune responses emerged during the post-acute phase. Older animals exhibited sustained local inflammatory innate responses, whereas local effector T-cell responses were induced earlier in the younger animals. Circulating lipid mediator and cytokine levels highlighted increased repair-associated signals in the younger animals, and persistent pro-inflammatory responses in the older animals. In summary, despite similar disease outcomes, multi-omics profiling suggests that age may delay or impair antiviral cellular immune responses and delay efficient return to immune homeostasis.


Subject(s)
Aging/immunology , COVID-19/immunology , COVID-19/veterinary , SARS-CoV-2/immunology , Acute Disease , Animals , Antibody Formation/immunology , Bronchoalveolar Lavage Fluid , COVID-19/complications , COVID-19/genetics , Cytokines/blood , Gene Expression Regulation , Gene Regulatory Networks , Genomics , Immunity, Cellular/genetics , Immunomodulation , Inflammation/complications , Inflammation/pathology , Lung/immunology , Lung/pathology , Lung/virology , Lymphoid Tissue/pathology , Macaca mulatta/immunology , Macaca mulatta/virology , Models, Biological , Single-Cell Analysis , T-Lymphocytes/immunology , Transcription, Genetic
13.
Nat Microbiol ; 7(2): 213-223, 2022 02.
Article in English | MEDLINE | ID: covidwho-1621245

ABSTRACT

The major transmission route for SARS-CoV-2 is airborne. However, previous studies could not elucidate the contribution between large droplets and aerosol transmission of SARS-CoV-2 and its variants. Here, we designed and validated an optimized transmission caging setup, which allows for the assessment of aerosol transmission efficiency at various distances. At a distance of 2 m, only particles of <5 µm traversed between cages. Using this setup, we investigated the relative efficiency of aerosol transmission between the SARS-CoV-2 Alpha variant (B.1.1.7) and lineage A in Syrian hamsters. Aerosol transmission of both variants was confirmed in all sentinels after 24 h of exposure as demonstrated by respiratory virus shedding and seroconversion. Productive transmission also occurred after 1 h of exposure, highlighting the efficiency of this transmission route. Interestingly, after donors were infected with a mix of both variants, the Alpha variant outcompeted the lineage A variant in an airborne transmission chain. Overall, these data indicate that a lower infectious dose of the Alpha variant, compared to lineage A, could be sufficient for successful transmission. This highlights the continuous need to assess emerging variants and the development for pre-emptive transmission mitigation strategies.


Subject(s)
COVID-19/transmission , SARS-CoV-2/genetics , Aerosols , Animals , COVID-19/virology , Female , Male , Mesocricetus , SARS-CoV-2/pathogenicity , Viral Load , Virus Shedding
14.
Viruses ; 13(12)2021 12 14.
Article in English | MEDLINE | ID: covidwho-1572667

ABSTRACT

Pre-existing comorbidities such as obesity or metabolic diseases can adversely affect the clinical outcome of COVID-19. Chronic metabolic disorders are globally on the rise and often a consequence of an unhealthy diet, referred to as a Western Diet. For the first time in the Syrian hamster model, we demonstrate the detrimental impact of a continuous high-fat high-sugar diet on COVID-19 outcome. We observed increased weight loss and lung pathology, such as exudate, vasculitis, hemorrhage, fibrin, and edema, delayed viral clearance and functional lung recovery, and prolonged viral shedding. This was accompanied by an altered, but not significantly different, systemic IL-10 and IL-6 profile, as well as a dysregulated serum lipid response dominated by polyunsaturated fatty acid-containing phosphatidylethanolamine, partially recapitulating cytokine and lipid responses associated with severe human COVID-19. Our data support the hamster model for testing restrictive or targeted diets and immunomodulatory therapies to mediate the adverse effects of metabolic disease on COVID-19.


Subject(s)
COVID-19 , Diet, High-Fat/adverse effects , Dietary Carbohydrates/adverse effects , Lipid Metabolism , Severity of Illness Index , Animals , COVID-19/pathology , Cricetinae , Cytokines/blood , Disease Models, Animal , Edema , Fibrin , Hemorrhage , Humans , Interleukin-10 , Interleukin-6 , Lipidomics , Lipids/blood , Liver/pathology , Lung/pathology , Male , Mesocricetus , Obesity , SARS-CoV-2 , Sugars , Vasculitis/pathology , Virus Shedding
15.
Emerg Infect Dis ; 27(12): 3052-3062, 2021 12.
Article in English | MEDLINE | ID: covidwho-1528794

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) infects humans and dromedary camels and is responsible for an ongoing outbreak of severe respiratory illness in humans in the Middle East. Although some mutations found in camel-derived MERS-CoV strains have been characterized, most natural variation found across MERS-CoV isolates remains unstudied. We report on the environmental stability, replication kinetics, and pathogenicity of several diverse isolates of MERS-CoV, as well as isolates of severe acute respiratory syndrome coronavirus 2, to serve as a basis of comparison with other stability studies. Although most MERS-CoV isolates had similar stability and pathogenicity in our experiments, the camel-derived isolate C/KSA/13 had reduced surface stability, and another camel isolate, C/BF/15, had reduced pathogenicity in a small animal model. These results suggest that although betacoronaviruses might have similar environmental stability profiles, individual variation can influence this phenotype, underscoring the need for continual global viral surveillance.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Aerosols , Animals , Camelus , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , SARS-CoV-2 , Virulence , Zoonoses
16.
Sci Adv ; 7(43): eabj3627, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1483968

ABSTRACT

The emergence of several SARS-CoV-2 variants has caused global concerns about increased transmissibility, increased pathogenicity, and decreased efficacy of medical countermeasures. Animal models can be used to assess phenotypical changes in the absence of confounding factors. Here, we compared variants of concern (VOC) B.1.1.7 and B.1.351 to a recent B.1 SARS-CoV-2 isolate containing the D614G spike substitution in the rhesus macaque model. B.1.1.7 behaved similarly to D614G with respect to clinical disease and replication in the respiratory tract. Inoculation with B.1.351 resulted in lower clinical scores, lower lung virus titers, and less severe lung lesions. In bronchoalveolar lavages, cytokines and chemokines were up-regulated on day 4 in animals inoculated with D614G and B.1.1.7 but not with B.1.351. In nasal samples, cytokines and chemokines were up-regulated only in the B.1.1.7-inoculated animals. Together, our study suggests that circulation under diverse evolutionary pressures favors transmissibility and immune evasion rather than increased pathogenicity.

17.
Nat Commun ; 12(1): 5868, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1462005

ABSTRACT

We investigated ChAdOx1 nCoV-19 (AZD1222) vaccine efficacy against SARS-CoV-2 variants of concern (VOCs) B.1.1.7 and B.1.351 in Syrian hamsters. We previously showed protection against SARS-CoV-2 disease and pneumonia in hamsters vaccinated with a single dose of ChAdOx1 nCoV-19. Here, we observe a 9.5-fold reduction of virus neutralizing antibody titer in vaccinated hamster sera against B.1.351 compared to B.1.1.7. Vaccinated hamsters challenged with B.1.1.7 or B.1.351 do not lose weight compared to control animals. In contrast to control animals, the lungs of vaccinated animals do not show any gross lesions. Minimal to no viral subgenomic RNA (sgRNA) and no infectious virus can be detected in lungs of vaccinated animals. Histopathological evaluation shows extensive pulmonary pathology caused by B.1.1.7 or B.1.351 replication in the control animals, but none in the vaccinated animals. These data demonstrate the effectiveness of the ChAdOx1 nCoV-19 vaccine against clinical disease caused by B.1.1.7 or B.1.351 VOCs.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Administration, Intranasal , Amino Acid Substitution , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , ChAdOx1 nCoV-19 , Female , Lung/immunology , Lung/pathology , Lung/virology , Mesocricetus , Spike Glycoprotein, Coronavirus/immunology , Vaccination
18.
Disabil Health J ; 15(1S): 101212, 2022 01.
Article in English | MEDLINE | ID: covidwho-1415355

ABSTRACT

BACKGROUND: The COVID-19 pandemic and subsequent mandates upended community participation in the United States. People with disabilities were often more vulnerable to the adverse effects of the pandemic. Some areas of community participation affected for this population include employment, access to transportation, and social engagement and connection to others. OBJECTIVES: The purpose of this study was to explore the effects of the COVID-19 pandemic for people with mobility disabilities across a variety of topics related to community engagement including social interactions with family and friends, and access to caregivers, groceries, transportation, and employment. METHODS: A survey was administered to participants with mobility disabilities (N = 39). Participants were asked to elaborate on topic areas that they identified as being affected by the COVID-19 pandemic. Data analysis included descriptive statistics and a content analysis in search of themes from open-ended responses. RESULTS: Results indicate that access to family and friends was the most negatively affected topic related to participation, followed by access to food and groceries, transportation, employment, living independently, caring for others, and participating in the community in general. In response to these pandemic-related challenges, participants reported utilizing technology to connect with others and to get essential items delivered. CONCLUSIONS: Findings from this rapid research emphasize the need for emergency preparedness strategies, accessible and reliable resources related to technology use (e.g., Internet), and continued access to services for people with disabilities to maintain various aspects of community participation throughout the COVID-19 pandemic and in the future.


Subject(s)
COVID-19 , Disabled Persons , Humans , Pandemics , SARS-CoV-2 , Surveys and Questionnaires , United States
19.
Viruses ; 13(8)2021 08 19.
Article in English | MEDLINE | ID: covidwho-1367918

ABSTRACT

Many different vaccine candidates against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, are currently approved and under development. Vaccine platforms vary from mRNA vaccines to viral-vectored vaccines, and several candidates have been shown to produce humoral and cellular responses in small animal models, non-human primates, and human volunteers. In this study, six non-human primates received a prime-boost intramuscular vaccination with 4 µg of mRNA vaccine candidate CV07050101, which encodes a pre-fusion stabilized spike (S) protein of SARS-CoV-2. Boost vaccination was performed 28 days post prime vaccination. As a control, six animals were similarly injected with PBS. Humoral and cellular immune responses were investigated at time of vaccination, and two weeks afterwards. No antibodies could be detected at two and four weeks after prime vaccination. Two weeks after boost vaccination, binding but no neutralizing antibodies were detected in four out of six non-human primates. SARS-CoV-2 S protein-specific T cell responses were detected in these four animals. In conclusion, prime-boost vaccination with 4 µg of vaccine candidate CV07050101 resulted in limited immune responses in four out of six non-human primates.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , Immunization, Secondary , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology , Animals , Antibodies, Neutralizing/blood , COVID-19 Vaccines/administration & dosage , Immunity, Cellular , Immunization Schedule , Macaca mulatta , Male , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccines, Synthetic/administration & dosage
20.
Nat Commun ; 12(1): 4985, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1361633

ABSTRACT

Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure. Different routes of exposure present with distinct disease manifestations. Intranasal and aerosol inoculation causes severe respiratory pathology, higher virus loads and increased weight loss. In contrast, fomite exposure leads to milder disease manifestation characterized by an anti-inflammatory immune state and delayed shedding pattern. Whereas the overall magnitude of respiratory virus shedding is not linked to disease severity, the onset of shedding is. Early shedding is linked to an increase in disease severity. Airborne transmission is more efficient than fomite transmission and dependent on the direction of the airflow. Carefully characterized SARS-CoV-2 transmission models will be crucial to assess potential changes in transmission and pathogenic potential in the light of the ongoing SARS-CoV-2 evolution.


Subject(s)
COVID-19/transmission , Fomites , Administration, Intranasal , Aerosols , Animals , COVID-19/blood , COVID-19/virology , Cytokines/blood , Female , High-Throughput Nucleotide Sequencing , Lung/virology , Mesocricetus , Nasal Cavity/virology , Particle Size , RNA, Viral/genetics , Respiratory System/virology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Vaccination , Virus Replication , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL